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Symmetry-breaking instability in a prototypical driven granular gas

Evgeniy Khain and Baruch Meerson
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
(Received 1 February 2002; published 28 August 2002

Symmetry-breaking instability of a laterally uniform granular clugigrip state in a prototypical driven
granular gas is investigated. The system consists of smooth hard disks in a two-dimensional box, colliding
inelastically with each other and driven, at zero gravity, by a “thermal” wall. The limit of nearly elastic particle
collisions is considered, and granular hydrodynamics with the Jenkins-Richman constitutive relations is em-
ployed. The hydrodynamic problem is completely described by two scaled parameters and the aspect ratio of
the box. Marginal stability analysis predicts a spontaneous symmetry-breaking instability of the strip state,
similar to that predicted recently for a different set of constitutive relations. If the system is big enough, the
marginal stability curve becomes independent of the details of the boundary condition at the driving wall. In
this regime, the density perturbation is exponentially localized at the elastic wall opposite the thermal wall. The
short- and long-wavelength asymptotics of the marginal stability curves are obtained analytically in the dilute
limit. The physics of the symmetry-breaking instability is discussed.
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[. INTRODUCTION cluster in a small region of space, where they move with very
small velocities, while a very few remaining particles move
Granular materials play an important role in industrial ap-with high velocities. Clearly, this steady state cannot be de-
plications, geophysics, and astrophysics. They are also of scribed by granular hydrodynami¢actually, by any coarse-
great general interest to physicists, as each of the “phasegjrained theory Therefore, the results of Kadanoff and co-
of granular materials, solid, liquid, and gas, have unusualvorkers[9] brought into question the validity of granular
properties that distinguish them from their clasgitomic or  hydrodynamics in general.
moleculay counterpart$1—3]. We will consider granular gas This question was addressed in two subsequent theoretical
(or rapid granular flowand focus on a variant of clustering works[10,1]] that dealt with similar systems in two dimen-
instability, a striking tendency of granular gases to formsions. Esipov and Rehel[11] investigated an ensemble of
dense clusters. Clustering instability was first discussed imearly elastic hard disks in a circular box with the circum-
the context of a freely “cooling” granular galst—6]. Fol-  ference serving as a thermal wall. Grossneaal.[10] con-
lowing these works, the related clustering phenomena wersidered a rectangular box, one side of which served as a
investigated in driven granular gases as well, both in experithermal wall. Particle simulationgl0,11] showed granular
ments[7,8] and in particle simulationg9—-11]. clusters: dense and “cold” regions of granulate developing
Granular clustering results from energy losses by inelastiaway from the thermal wall. In terms of the coarse-grained
collisions, and it is a manifestation of thermal condensatiorparticle density, these steady-state clusters had simple
instability, also encountered in other fields, for example, inshapes: azimuthally uniforrftircular state¢[11] and laterally
gases and plasmas that cool by their own radiafib®. uniform (strip state [10]. Grossmaret al. also showed that,
Since the discovery of the clustering instability, the validity for nearly elastic collisions, the strip state is describable by a
of granular hydrodynamicésee Ref[13] for a review has steady-state solution of granular hydrodynamic equations.
been under scrutiny3]. In contrast to the clustering in a The empiric constitutive relations suggested by Grossman
freely “cooling” granular gas, where one deals with a com- et al. used simple interpolations between the low-density
plex time-dependent process, steady states are achievablelimit, where the constitutive relations are derivable system-
driven granular systems. One of the simplest settings of thiatically[18], and high-density limit where, close to the dense
type is driving the granulate by a side wall at a zero gravity.packing, free volume arguments can be used.
Therefore, an ensemble of inelastically colliding hard The results of Refd.10,11] showed that the anomaly ob-
spheres, confined in a box and driven by one or two “ther-served in the one-dimensional settif] does not persist in
mal” walls has served as a prototypical driven granular syshigher dimensions. Clustered states qualitatively similar to
tem[7,9,10,14—17. Steady states of this system have servedhose of Grossmaret al. were observed in experiment of
as the test beds for granular hydrodynamics and its violaKudrolli et al.[7] who investigated a system of steel spheres
tions. The first analysis of this system in the physical litera-in a box, rolling on a smooth surface and driven by a rapidly
ture was performed, in one dimension, by Kadanoff and covibrating side wall. The number of particles served as the
workers[9]. The nearly elastic particles were constrained tocontrol parameter in Ref7]. A dense cluster of the strip type
move on a straight line with energy input from the bound-was observed when the number of particles was big enough,
aries. Particle simulation®] showed that, for typical initial in much the same way as in R¢L0]. The basic physics of
conditions, the system evolves to a state where the particlebe strip state is simple and can be explained by the follow-
are separated into two groups. Almost all particles form ang hydrodynamic argument. Because of the inelastic colli-
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sions the particle random motion slows dovthat is, the  more insight into the marginal stability problem and, where
granular temperature decreasesth the increase of the dis- possible, to obtain analytic results. We shall show that the
tance from the driving wall. To maintain the momentum bal-marginal problem is equivalent to an eigenvalue problem of
ance, the granular density should increase with this distancguantum mechanics. An important finding here is a universal
When the total number of particles is big enoutfie rest of behavior of the marginal stability curves in the limit when
parameters being the samehe density contrast becomes the density perturbations are strongly localized at the elastic

large, and the enhanced density region away from the driving/@ll opposite to the thermal wall. In the dilute limit, we
wall is observed as the strip state. analytically obtain the short- and long-wavelength asymptot-

ics of the marginal stability curves and density eigenfunc-
tions. We also give a physical interpretation to the symmetry-
breaking instability and to the density borders of the
instability region.

The rest of the paper is organized as follows. In Sec. Il we
formulate the model and briefly describe the strip state: the

For nearly elastic c_oII|S|ons, however, gr"’?”“!ar hydroqynam'simplest steady state of the prototypical system. Section IlI
ics was shown to yield an accurate quantitative description "bresents marginal stability analysis of the strip state and

the dilute limit [14], and a reasonably accurate descriptioncompares the results obtained for two different sets of con-
for moderate and high granular densij@s]. Of course, the  gjtytive relations. More results on marginal stability, includ-
nearly elastic limit is quite restrictive for most of the realistic jng some analytic results in the dilute limit, are presented in

granular flows. St|”, this limit is Conceptually important jUSt Sec. |V. Section V includes a discussion and summary.
because granular hydrodynamics can be used there. Granular

hydrodynamics has a great predictive power and helps us to
identify important collective phenomen@ahear flows and Il. PROTOTYPICAL SYSTEM AND STRIP STATE

vortices, §h_ocks,. diﬁe_rent ques of. cIusFering flows.,)e_tc. The prototypical driven granular system in two dimen-
that are difficult, if not impossible, to identify and predict in gjons include inelastically colliding hard disks of diameder
the language of individual particles. Once identified, theseyng massn=1, moving in a box with dimensionis, x L,.
phenomena can then be investigated in experiment and simgthe gravity force is zero. Collisions of disks with the walls
lations in more generghot necessarily hydrodynamifor- x=0,y=0 andy=L, are assumed elastic. The wat L, is
mulations. “thermal” wall: upon collision a particle is assigned a ran-
Therefore, granular hydrodynamics provide a leading-dom velocity taken from a Gaussian ensemble with tempera-
order approach to a big ensemble of nearly elastically collidture T,. Energy input at the thermal wall balances the energy
ing grains. This approach has been taken recently by Livnéissipation due to interparticle collisions, so the system can
et al. [17] who employed granular hydrodynamics for a sta-reach a steady state. We shall parametrize the inelasticity of
bility analysis of the strip state described above. The analysithe particle collisions by a constant normal coefficient of
revealed a spontaneous symmetry-breaking instability of theestitutionr and work in the nearly elastic limit: 2r?<1.
strip state with respect to perturbations along the strip. Welln this limit, the Navier-Stokes granular hydrodynamics is
within the instability region, the clustered states with brokenexpected to be sufficiently accurate in a system with a big
symmetry, found by a numerical solution of the steady staté@umber of particles and small Knudsen number. The possible
hydrodynamic equation, are strongly localized in the laterafté@dy states of the system are described by the steady state
direction: most of the particles are located in dense “islands’V€rsions of the momentum and energy balance equations,

[17]. These results indicate that the prototypical system can

show a nontrivial behavior even in the leading-order, hydro-

dynamic limit. Indeed, this systems can be put into the list of p=const and V-(«VT)=I, 1)
pattern-forming systems far from equilibriuf9].

The present work focuses on a more detailed stabilitywherep is the granular pressurg, is the granular tempera-
analysis of this system. Our first objective is to check as taure, « is the thermal conductivity, anidis the rate of energy
what extent the symmetry-breaking instability predicted inlosses by collisions. We assume that the number densgy
Ref.[17] is sensitive to the constitutive relations. Liveeal.  not too big:n/n,<0.5, wheren.=2/(y/3d?) is the (hexago-
[17] employed the empirical relations suggested by Grossnal) dense packing density. This assumption enables us to
manet al.[10]. Here we shall use the better-known Jenkins-employ the constitutive relations derived by Jenkins and
Richman(JR) relations[20]. While the relations of Gross- Richman[20] and presented in a more convenient form by
man etal. are more accurate for high densitigeven Babic[21]. For the steady state problem, the required con-
including those close to the dense packing limthe JR  stitutive relations include the equation of state-p(n,T)
relations should work better at low and intermediate densiand relations fok andl in terms ofn andT. In our notation,
ties. We shall see, however, that the marginal stability curveghese relation$20,21] can be written as
obtained with these two sets of relations, are not much dif-
ferent from each other. This implies that the symmetry-
breaking instability is robust. Our second objective is to get p=nT(1+2G’),

The prototypical system exhibits many interesting phe
nomena ofnonhydrodynamimature. These include inelastic
collapse[11,15, possible lack of scale separatifi0], non-
Gaussianity in the particle velocity distributi¢h0,16|, nor-
mal stress difference and pressure nonuniformitie, etc.
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2dn TG’ 97 2 \? ment or particle simulations, the number of partichgs
k=————1+—| 1+ —] |, fixed. This yields a normalization condition,
J 16 ( 3G’
A dxdy
8(1—r)nT¥%G’ f f z(xy) R ©
Jmd

where f=(n)/n, is the area fraction of the grains axd)
7 =N/(LL,) is the average number density of the grains.
(1——) Equations(3)—(5) and the boundary conditions make a
r_ 16 , 2) complete set. One can see that the governing parameters of
(1-v)? this system are the scaled parametersf, and A. If the
system is infinite in the direction, only two governing pa-
wherev=n(md?/4) is the(local) solid fraction. Let us intro-  rametersy andf remain. Notice that the steady-statensity
duce scaled coordinatedl ,—r. In the new coordinates the distributions are independent of the wall temperafTiggin
box dimensions are XA, where A=L,/L, is the aspect contrast to the similar problem with gravity, where the grav-
ratio. Introducing the normalized inverse densiyx,y) ity acceleration, combined witf, and the(finite) system
=n./n(x,y), one can rewrite the energy balance equation irsize in the direction of gravity, would make an additional

Eqg. (1) in terms ofz(x,y): governing parameter.
The laterally uniform steady sta(strip statg corresponds
V- (F(2)V2)=1Q(2), (3 to the one-dimensional¢independentsolutionz=Z(x). It

is described by the equations

(FZ')'=7Q, Z'|x=0=0,

whereF(z)=A(z) B(2),

G| 1+ o 1+ 2 )*
A2) 161”36 a [z 00dx-t 6
z)= ; an - =f,
ZV41+2G)%"? o7 I ©
o where primes stand for thederivatives. For the strip state,
z| 2+ ——= the boundary condition at the wall=1 drops out. This im-
B(2)=1+2G+ o 16\/§ plies, in particular, that thdensityprofile of the strip state is

J3 o\ independent of the exact nature of the driving wgtlermal
e or vibrating wal) [22]. This degeneracy of the strip state is
caused by the character of particle interaction: the hard-core
potential does not introduce any characteristic engidy.

_ zY%G Notice that, instead of prescribing the grain area fracfion
Q(2)= T (1+ZG)3’2' one can prescribe the inverse density Z, at x=0. This
condition, combined with the no-flux condition a0 de-
7 fines a Cauchy problem fat(x). Solving the Cauchy prob-
7 lem, one can then compute, from the last equation in(&y.
T 323 the respective value df At a fixed #, there is a one-to-one
G(z)= 2.3 o |2 (4) correspondence betweely andf. Therefore, an alternative
(z_ _> parametrization of the strip state is given by the scaled num-
2\3 bers » and Z,. We shall see below that the same property

5 ) . keeps(and can be conveniently useid the marginal stabil-
and »=(2m/3)(1-r)(L,/d)". Notice that, for an arbitrary jty problem. Figure 1 shows a typical example of the scaled

small but finite inelasticity +r, the dimensionless param- density profilen(x)/n. of the strip state obtained by solving
eter » can be made arbitrarily large, if the system sizels  Eqs. (6) numerically.

large enough. Parameterdiffers from the parametef used
by Livne et al.[17] only by a numerical factor of order unity.
Of most interest are regimes whene>1, see below.

The boundary conditions for E¢B) are determined by the
properties of the particle-wall interactions. At the elastic In general, the strip state is only one of the possible solu-
wallsx=0, y=0, andy=A we should prescribe a zero nor- tions of Eq.(3). Because of its nonlinearity, E(B) may have
mal component of the heat flux. In terms of the inverse denadditional solutions satisfying the same boundary conditions.
sity zwe haveV,z=0 at these three walls. Here the index When these additional solutions exist, they are truly two-
denotes the gradient component normal to the wall. The cordimensional: the translational symmetry alopgs broken.
stant temperature at the “thermal” wall=1 yields the con- An important class of these solutions bifurcate supercritically
dition dz(x=1y)/dy=0. To make the formulation of the from the strip stat¢17]. Therefore, close to the bifurcation
problem complete, one more condition is needed. In experipoint, these solutions can be found by linearizing E3).

I1l. INSTABILITY OF THE STRIP STATE: MARGINAL
STABILITY CURVES
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FIG. 1. An example of the scaled density profilex)/n. of the 0 1 2 12 3 4:
strip state for the JR constitutive relations. The governing param- f

eters arep=10" and f=0.0342.
FIG. 2. Marginal stability curves for different values gf plot-

around the strip state. A similar analysis was performed irfed in scaled coordinatek 2 versusf "% For a fixed the
Ref. [17] for the constitutive relations of Grossmaa al. strip state is stable above the respecpve_ curve and unstable below
[10]. In the framework of aime-dependenhydrodynamic the curve. The vaIue; o are 1¢ (solid Ilne)., 2.5x10* (dashed
formulation, this analysis corresponds riarginal stability line), 5x10* (dotted ling, and 16 (dash-dot ling
analysis of the strip state with respect to small perturbations
along the strig17]. the curve. Notice that, at a fixeg, the instability is possible

Substituting z(x,y) = Z(x) + ¢ (x)cosky and linearizing  only within a finite interval off: f,(7)<f<f,(#). The same
Eq. (3) with respect to the small correctiafi(x)cosky, we  property was reported in Reffl7] for another set of consti-

obtain tutive relations. We shall give a physical explanation to this
finding in Sec. IV. Noticgsee also Ref.17]) that, at largey,
P (W_Qz+ k2| p=0 @) the high-density stability borddy, is quite small. The curves
F ' in Fig. 2 are actually plotted in scaled coordinatks™ %2

_ versusf »*2. It can be seen that, in the scaled coordinates, all
Here ¢(x) =F ¢i(x), functionsF andQ are evaluated a  the curves exit from the same point of the horizontal axis
=Z(x), and subscripZ means thez derivative evaluated at f 2 In addition, the maxima of all the curves are equal.

z=Z(x). The boundary conditions are These observations will be also explained in Sec. IV.
) If the system is infinite in the lateral directio=oo,
¢'(x=0)=0 and ¢(x=1)=0. ®  while 7 and f are fixed, a whole continuum spectrum of

wave numbers betweek=0 and k=k(#,f) is unstable.
Both in experiment and in numerical simulatiofss finite.
In this casek becomes discrete because of the boundary con-

Equation(7) coincides with the Schringer equation for an
evenwave functiong(x) of a particle in the potential well

0 ditions: k=m#/A, wherem=1,2, .. .. Foreachm we can
=z i [x|<1, find the critical value of the aspect ratdo (let us call itA )

ux=4 F (9)  such that forA>A,, the strip state loses stability with re-
+o  otherwise. spect to them mode. ObviouslyA,,=mA,, andA; is the

lowest critical value for the symmetry-breaking instability.
The quantity—k? serves as the energy eigenvalue. The enFigure 3 shows\; as a function of for different values of
ergy levels in the potentidb) are always discrete, and there 7. For fixed » andf, the strip state is unstable above the
is an infinite number of them. However, as the wave numbecurve. It is seen from Fig. 3 that, in order to observe the
k should be real, only negative or zero energy levels arsymmetry-breaking instability, one does not need to work
admissible. At fixed values ofy andf, the potential(9) ad-  with very large aspect ratias: it is sufficient if the system is
mits at most one such energy level. The absence of negatiyi@g enough, so that parametgris sufficiently large.
energy levels implies that, in the vicinity of the strip state, To what extent is the symmetry-breaking instability sen-
there are no steady states different from it. The presence ofsitive to the precise form of the constitutive relations? We
negative energy level corresponds to a “weakly two-compared the marginal stability curvas= A (f) for differ-
dimensional” steady state, bifurcating from the strip state.ent values ofy with the respective curvdd 7] found for the
We shall exploit the quantum-mechanical analogy more fullyconstitutive relations of Grossmaat al. [10]. A typical ex-
in Sec. IV. Here we report on some numerical results. Figuremple of this comparison is shown in Fig. 4. One can see
2 shows the marginal stability curves: the curkesk(f) at  that, qualitatively, the results are the same: both curves de-
different values ofp, computed numerically. In these com- scribe a symmetry-breaking instability at a critical value of
putations, the parameterwas taken large enough. The strip the aspect ratio that depends on the area fraction. In both
state is unstable below the respective curve and stable aboeases, there are sharp low- and high-density borders of insta-
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FIG. 3. The critical aspect ratid, for the symmetry-breaking 0
instability as a function of for different values ofy. For a fixedn, 0
the strip state is stable below the respective curve and unstable
above the curve. The parameters gre=10" (solid ling), 7,=2.5 . o . s
% 10° (dashed ling 75=5x 10" (dotted ling, and ,= 10° (dash- EIG. 5. Margln_al staf)illlzty curves for dlfferent values ?f plot
dot line). ted in coordinatek=k#» ™ ~“ versusZ,. For a fixedy the strip state

is stable above the respective curve and unstable below the curve.
The inset shows the splitting of the curves near the high-density
stability border. The values of are: 1¢ (solid line), 2.5x 10*
dashed ling 5% 10* (dotted ling, and 18 (dash-dot ling

bility region. Therefore, we can conclude that the instability
is robust and does not require a very special form of th
constitutive relations. On the other hand, there is a noticeabl
(about 15% difference in the exact positions of the marginal Equations(6) for the strip state become
stability curves, so the instability provides a good quantita-

tive test for constitutive relations of granular hydrodynamics. (FZ')'=Q Z(7= 0)=2, and Z’(;= 0)=0

(10
IV. MORE RESULTS ON MARGINAL STABILITY . .
while the eigenvalue problerfY) and(8) reads
In this section we investigate the marginal stability prob- 9
lem in more detail and obtain some analytic results in the v |NZ ), P
dilute limit. ¢ ( F TK)#=0. ¢'(x=0)=0
N . . and
A. Localization and universality
Let us characterize the strip state by the scaled parameters (b(;= 7% =0. (1)

7 andZ, and introduce a different rescaling of the coordi- o
nate:x=x 72 In terms of the original physical coordinate Now the primes denote the derivatives with respecifo
Xph, the new rescaling is independent of the system size: while k=k# Y2 is the new scaled wave number. Like the

12 12 coordinatex, the new scaled wave numbleris independent
e 2| 7(1=r1)"Xpn of L.-
—( ) = 72 "Pn -
3 d
—:(i) " kond
4 i ; 2 (1—r)42
wherek,, is the physical wave number. The problea0)
3 . and(11) is determined by two paramete®; and ». How-
< [ ever, n enters the rescaled equations only in one place: in the
2 \ . last boundary condition in Eq11) where it determines the
i scaled system size. If the wave functigf(x) is strongly
1 localized in the potential welU(x) (correspondingly, the
T negative energy level is sufficiently deephe results foik
L 002 ;003 0.04 and ¢(x) become independent of at sufficiently largesn.
Indeed, in this case one can safely move the boundary
FIG. 4. The critical aspect ratia\,(f) for the symmetry- = 7" to infinity. It is important that, in this case, the exact
breaking instability as computed for the constitutive relations ofform of the boundary condition at the driving wall becomes
Grossmaret al.[10] (dash-dotted lineand of JR[20] (dotted ling. insignificant, leading only to exponentially small corrections
Parameter;= 11 094. [22]. This universal “localization regime” was discovered in
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FIG. 6. An example of the negative energy levek —k? FIG. 8. Another example of the negative energy lefiel —k?
=—83.01 (dashed ling in the potentialU(x) (solid line) in the = —4.1 (dashed lingin the potentialU(x) (solid line) in the ab-
regime of localization. The parameters ape=2.5x 10" and Z, sence of localization. The parameters 2.5x 10* andZ,=2.3 cor-
=6. respond to the region close to the high-density stability border.

a- Ffameters where the energy level is deep and eigenfunction is
localized. Figures 7 and 8 correspond to the parameter re-
gions close to the low- and high-density borders of the insta-
bility, respectively. There is no localization here. Notice the
ualitative change in the form of the potential near the high-
ensity stability border. Figure 9 shows the respective eigen-
functions in these three cases.

Ref. [17] that employed a different set of constitutive rel
tions. The criterion for localization can be obtained from the
requirement that the localization lengfivhich is of order

k~1) be much smaller than thiscaled system sizep’? In
the physical units it corresponds to the short-wavelengtlﬂ
limit of the bifurcating solution:k,,L,>1. To fulfill this

criterion, k should be far enough from the borders of the

instability interval, wherek vanishes. In the following sec-  B. Marginal stability borders and physics of the instability
tion we will work in the dilute limit and rewrite this criterion

in terms of the governing parameters of the problem. The low- and high-density stability bordefs(7) and

. . - — f,(7n) (or respective borders in terms 8f) are determined
Figure 5 shows the marginal stability curdes k(Z,) for by th N lueki= 0 luti f Eq/(11). Thi i
different values ofz, obtained numerically. Instead of the y' € z€r0 elgenvgu €0) solution 9 q: g IS S0
bordersf, () andf,(#) of the instability interval in terms  lution can be found if we know the strip soluti@{x;Z,) of
of parametef, the respective borders in terms of parameterEq. (10). Indeed, it is easy to check that functiapy(x)
Z, appear. One can see that, for large valuegothe mar- =F 97/9Z, is a solution of Eq(11) with k=0, satisfying
ginal stability curves coincide in a wide region 8§ not too e boundary conditiom&’(;:O). Employing the second

close to the borders of the instability interval. This region = . _
corresponds to strong localization. Figures 6—8 show thgoundary condition(x=7"%)=0, we obtainiZ,/9Z,=0,

(v — L2 H H : H
form of the potential9) and the negative energy levelk? ~ WhereZ,=Z(x=7"%Z). For a giveny, this equation is an
in three characteristic casés these figures we returned to @/gebraic equation foZ,. Our numerical results imply that

the rescaling of the coordinates and wave number by th#is equation has only two solutions corresponding to the
system sizel ). Figure 6 corresponds to the region of pa- I0W- and high-density instability borders. The instability bor-
ders have a clear physical meaning that sheds light on the

O e e

-1

-2

)

-3

-4

> 0.5 0.5 1 % 02 04 0.6 0.8 1

FIG. 7. An example of the negative energy levek —k? FIG. 9. Eigenfunctionsp(x) corresponding to the eigenvalues

=—0.155 (dashed ling in the potentialU(x) (solid line) in the  shown in Fig. 6(strong localization, solid line Fig. 7 (dash-dot
absence of localization. The parameters 2.5x 10* and Z,=75 line), and Fig. 8(dashed ling The eigenfunctions ar@rbitrarily)
correspond to the region close to the low-density stability border. normalized so that)(0)=1.
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6.2 consider a small density modulation of the strip state with a
very long wavelengthk— 0. For this perturbation, the stabi-
6 lizing effect of the lateral heat conduction vanishes, and the

negative compressibility makes the strip state unstable in the

sgl interval (f,,f,). For a nonzerd, the lateral heat conduction

o has a stabilizing effect. Therefore, a density modulation with
too short a lateral wavelength should be stable, as Fig. 2
5.61 indeed shows.
5.4r C. Dilute limit
0 0.02 00a In this section we shall work in the dilute limit and derive

f several analytic results. We shall see that, at larmgehe
dilute limit faithfully reproduces the low-density parts of the

FIG. 10. The scaled steady-state granular presBurersus the marginal stability curves

grain area fractioffifor the strip state. The two circles correspond to
the marginal stability borderk; andf,. The effective lateral com-
pressibility of the gas is negative on the intervg] f,). Parameter
n=10". In the dilute limit, Z>1, Eq. (10) for the strip state be-

comes
physics of the instability. Let us consider the granular pres-
surep=nT(1+2G) [20] of the strip state, and introduce a
scaled pressure

1. Strip state and marginal stability problem

(23/2)":32—1/2’ (12)

where the primes denote the derivatives. The boundary
P 1+2G T conditions arez’ (x=0)=0 andZ(x=0)=Z,, whereZ, is
nT, Z T_o' related to f and # by the normalization condition

- .  [y727Ydx=f 2 The solution of this problem is elemen-
As P is independent of the coordinates, we can compute it agyy:

the thermal wallx= 72 Here T=T, and Z=Z,, so we

arrive at x= %(arccosh/@- V=0, (13
1+2G(Z,)
P=Z—1=P(7],f)- where{=27/Z, and
Now let us compute the derivativiP/Jf at a constanty: 7 2771/2 (14)
0~ 1 ) )
9P - £ (9_21 (9_20 f 92+ > sinh(2f ?)

ot 9z, 9Zy of
. i ) o (Returning for a moment to the old rescaling of the coordi-
One can easily qheck that. the f|r§t and third mu“'p“erS.O”nate,xph/LX—>x, one can see that the density profiks) is
the right-hand side of this relation are always negative yetermined by @ingle parameter£= f »%2) Equation(11)

Therefore, the sign 0fP/df is determined by the sign of — 12,
dZ,19Z,. As we have seen, the marginal stability borders arefOr $()=(V312)Z"(x) yx(x) takes the form

determined by equatiofZ,/9Z,=0. Therefore, the steady- 1

state pressure has its extremum points exactly at the plgints ¢,"_< K— _> ¢=0, (15)
and f,. Figure 10 shows an example of the dependece 2

=P(f) at a constant; for the strip state, found numerically. — s . _ S

One can see, tha is a decreasing function dfwithin the  where k=k?Z§, and{={(x) is given, in an implicit form,
instability interval ¢;,f,), and an increasing function é¢f by Eq.(13). The boundary conditions for E¢L5) remain the
outside the interval. The physical interpretation of these resame as in Eq11). As /(x) is a monotonic function of, we

sults is clear. The presence of the anomaldalting) part of .5, change the independent variable in @) from x to .
the P(f) curve indicates instability, and it is caused by the e resulting equation fos(¢) is

destabilizing role of collisional heat losses. We can say that,

in the interval ¢,,f,), the granulate hasegative lateral 4(L—1)(P"+2¢" +(1— k(P p=0, (16)
compressibility. Atf<f; the heat losses are too small to

cause instability. The presence of the high-density bofder where the primes now denote thiaerivatives. The function
is caused by the finite-density corrections to the constitutivep({) is defined on the interval €£{=<{,, where {;
relations(that is, by the finite size of the particlehis isin ~ =Z,/Z,=costf¢ One boundary condition ig({={;)=0
contrast to radiative condensations in gases and plasmas, which we may add an arbitrary normalization condition
where such a stabilizing effect would be absgif2]. Now  ¢({=1)=1. An additional boundary condition)’({=1)

021306-7
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1.4

12
fln

1.2

1

100 200 1/ 300 400
n
FIG. 11. The scaled low-density stability boundggy= f, n*? at
different %2 as found numerically from Eq7) (circles. The solid
line shows the analytical resul;=1.199@ ... obtained in the
dilute limit.

=(k—1)/2, can be found from Eq16) itself, after substitut-
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0.2

0 .
0 0.2
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FIG. 12. The zero-energy eigenfunctieby(x) computed nu-
merically from Eq.(7) (circles and given analytically by Eq$17)
and (13) (solid line). The parameters arg= 10", f1pum=0.0124
(circles andf; ;n,=0.0120(solid line).

be found numericallyA=0.525. This simple result repre-
sents the low-density limit of the “universal” marginal sta-
bility curve, corresponding to strong localization. Figure 13
shows this asymptotics fop=10". One can see excellent

ing there/=1. This eigenvalue problem includes a single @greement for large enoughy, but not too close to the

parametei, while « serves as the eigenvalue.
We have been unable to solve E6) analytically for a

higherZ, (low-density instability border. Near the instabil-
ity border ¢ becomes of order of unity, and localization

generalx. Still, several important asymptotics can be ob-Préaks down.

tained.
2. Zero-energy state and stability bordey f

Fork=0, EqQ.(16) can be solved analytically:

(L k=0)=po({)={—J{—1arccosk¢.  (17)

In other words, we impose a zero eigenvakse0 and find
the low-density stability bordef,=f(#) from the bound-

ary condition ¢({,)=0. We obtain an algebraic equation

coth)=¢, for £&,=1f,;»*2 Its solution is&;=1.1996 . . ..

Returning to the parameters and f, and to the wave

numberk=kp,L,, we can rewrite the asymptotiés=A/Z,
as

A 1
k== f 12+ 5 sinh(2f 7). (18)

This asymptotics is shown in Fig. 14.
The asymptotic$18) is valid whené=f »¥2>1. Itis easy
to check that this criterion coincides, in the dilute limit, with

This result explains why all marginal stability curves shownthe |ocalization criteriork 1< 72 discussed in Sec. IVA.

in Fig. 2 depart(almos} from the same point at the low- op the other hand, the parameteshould not be too large,
density side. Figure 11 compares the scaled quahify’” at

different 7, found numerically from Eq(7), with this ana-
lytic prediction(a constant The agreement is very good for
large . As 5 goes downf, increases and the dilute approxi-
mation starts to deteriorate.

Figure 12 compares the analytic result for the zero-energy ~0.04
eigenfunctionqy(x), given by Eqs.(17) and (13), with a
numerical solution of Eq7) for »=10*. The coordinatein
Fig. 12 is rescaled by, . The analytic and numeric results
are obtained for slightly different values 6f (see Fig. 11
One can see that the agreement is excellent.

0.06

3. Short-wavelength limit: Localization and universality 0 0 5'0 150
In the short-wavelength limit the system bounddry ¢,
=cost¢é can be moved to infinity. This requires a strong

FIG. 13. The marginal stability curve fop=10°, plotted in
inequality é=f »Y?>1. In this limit, the eigenvalue problem

coordinatesk=k»~ 2 versusZ, (solid line) and two dilute-limit

(16) does not include any parameter. The eigenvakie

should therefore be a number of order of unity, helkce
=AlZ,, with constantA of order of unity. The constant can

asymptotics: the dilute-limit park=A/Z, of the (“universal”)
short-wavelength curvédotted ling and the long-wavelength as-
ymptotics(25) (dashed ling
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20 ‘ where G,=?¢ol4, G,={({—1), W= ,®,— D[P, and

T the primes denote thé derivatives. Integral$; andl, can
be evaluated in elementary functions, but the results are too
cumbersome to be presented here. The additional boundary

condition [at (=Z,/Zy=¢,] reads (&q)=do(L1)
+ kQ({1) =0 which yields

A k(&)= —po({1)I1Q(Ly), (22)
where ;= coslté. At the low-density stability bordef=f,
we haveé=¢,=1.199@. ... In theperturbative treatment,
one should expand(¢) nearé= ¢, up to the linear terng
—&,. The zero-order term vanishes, and we obtain

D5(&1)
K(E)=———FF—(&-&).
O~ 20, Eien
In the physical variables we have
FIG. 14. Marginal stability curves for different values @f 12 D&y 172
plotted in coordinatek versusé=f »%2. For a fixed 7, the strip KoLy = 7 _ 2151 ) (E-)Y2 (23)
state is stable above the respective curve and unstable below the P Zo(E) | 2D4(&1)12(€1)

curve. The values ofy are: 10 (solid line), 2.5x 10* (dashed ling _ . . _

5x10° (dotted ling, and 16 (dash-dot ling Also shown(by  As Zg is proportional ton', the right-hand side of Eq23)
circles is the dilute-limit asymptotic&18) of the universal marginal i actually independent of. Evaluating the integrall,(£;),
stability curve. we obtainl,(&;)=—0.88334 ... . Thefinal result is

_ _£\12
so that the dilute limit conditioZ,>1 is still satisfied, see Kpnbx=2.515. . (6= &)™ (24)
Eqg. (14). These two criteria can be rewritten as a strongaternatively, we obtain
double inequality forf,

K(Zy)= &1 )3/2( 20_20(51))1/2
L In(87*2) O\ Zo(&y) 215(&y)
—<fe——"
n? 29? =0.0004% .. .(Zy(£1)—Zg) 2 (25)
that can be satisfied only for extremely large The asymptoticg25) is depicted in Fig. 13. Close to the
higherZ, (low-density stability border it shows good agree-
4. Long-wavelength limit: Perturbation theory ment with the marginal stability curve found numerically.

Close to the low-density stability bordef,—f;<f;
=1.199® .. .7 Y?we can assume that<1 and solve Eq. V. SUMMARY AND DISCUSSION

(16) perturbatively. In the physical units, this strong inequal- e determined the criteria for the spontaneous symmetry-
ity corresponds to the long-wavelength limi;,L,<1. In  preaking instability of the laterally uniform granular cluster
its turn, the dilute limit requiresy>1. We substitute in EQ. (strip stat¢ in a prototypical driven granular gas. Working in
(16) 4(0)= ho(L) +k€(L), whered is given by Eq.(17).  the limit of nearly elastic particle collisions and low or mod-

Neglecting thex® term in Eq.(16), we obtain erate densities, we employed granular hydrodynamics with
, . 5 the Jenkins-Richman constitutive relatig@§]. The instabil-
4({=1)¢0"+2Q"+0={"¢o(L). (19 ity of the strip state can be interpreted in terms of negative

o . compressibility of the granulate in the lateral direction. An
The normalization ,and boundary condmons g1 are important limit is found, where the marginal stability curves
((¢=1)=0 and Q'({=1)=1/2, respectively. The latter g jngependent of the details of the boundary condition at
condition follows from Eq/(19) itself. Equation(19) can be  he griving wall. In this regime the density perturbation is
solved analytically. With the account of the two boundary gyponentially localized at the elastic wall opposite to the

conditions, we obtain driving wall. Working in the dilute limit, we obtained some
1 analytic asymptotics of the marginal stability curves.
Q(H)=——P +d | —® | . (20 The results of this work show that the symmetry-breaking
(¢) 8 20+ P2 O1(0) 1(D12(0), (20 instability predicted in Ref[17] is robust and does not re-

quire very special constitutive relations. The marginal stabil-
where ®;()=({—1)"* and ®,({)=—2¢0({). 11 andl, ity curves obtained in this work are quite similar to those
are indefinite integrals: obtained earlief17] for a different set of constitutive rela-
tions (see Fig. 4 There are some quantitative differences,
|— F q’leldg and 1= fg qDZGldg (21)  however. Therefore, the instability provides a sensitive test to
1 2 G,W ~*’ the accuracy of constitutive relations.

021306-9
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This work was focused on the criteria of instability of the dilute two-dimensional granular bed fluidized by a rapidly
strip state. In systems sufficiently long in the lateral direc-vibrating bottom plat¢25]. Under conditions of the simula-
tion, instability occurs in a whole range of wave numblers tions[25] there was no direct, mechanical coupling between
(below the respective marginal stability cuyjv€orrespond- the bottom plate vibration and collective granular motions.
ingly, multiple steady state solutions with differdnare pos-  Therefore, the vibrofluidized system, investigated in Ref.
sible. In a laterally infinite system, these solutions are perit25], is similar (though not identicalto the model system
odic in the lateral coordinate. A finite system selects a finitegriven by a thermal wall. As gravity introduces an additional
number of wavelengthisl 7]. An important issue that was not scaled parameter, the phase diagram of this type of systems
addressed in this work is selection: what is the Wavelength 0§h0u|d be more Comp"cated. For examp|e, it is a|ready
the resulting symmetry-broken cluster in an infinite, or longknown that, at some values of the scaled parameters, steady
enough, system? The selection has dynamical nature; thighermal” convection(steady state of a different typdevel-

important issue is addressed elsewH&®d.

ops both in vibrofluidized systen{®5,2€ and in systems

Recently, the predicted symmetry-breaking instability hagjriven by a “thermal” wall[27,28. Granular hydrodynamics

been observed in particle simulatidret]. We hope it will be

will be instrumental in delineating the phase diagrams of

investigated in experiment, too. The experimental setting cathese systems in the limit of nearly elastic collisions.

be of the type used by Kudrolli and co-work€rs,16]: a

Finally, when inelasticity of the particle collisions ot

system of steel spheres, rolling on a smooth surface angmall, the normal stress difference, possible lack of scale
driven by a rapidly vibrating side wall. The present work separation, and non-Gaussianity in the velocity distribution
(see also Ref.17]) provides the region of parameters where may become important. The potential role of these effects on

the instability can be observed. An important issue is tothe symmetry-breaking instability should be the subject of
eliminate the static friction between the particles and surfacerther investigations.

that occurs far enough from the driving wall. In experiment,

this is achieved by slightly inclining the system, so that a

very small gravity appeaf§,16]. As the result, the strip state

moves down, toward the driving wdlV]. The model prob-
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