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Symmetry-breaking instability in a prototypical driven granular gas

Evgeniy Khain and Baruch Meerson
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

~Received 1 February 2002; published 28 August 2002!

Symmetry-breaking instability of a laterally uniform granular cluster~strip state! in a prototypical driven
granular gas is investigated. The system consists of smooth hard disks in a two-dimensional box, colliding
inelastically with each other and driven, at zero gravity, by a ‘‘thermal’’ wall. The limit of nearly elastic particle
collisions is considered, and granular hydrodynamics with the Jenkins-Richman constitutive relations is em-
ployed. The hydrodynamic problem is completely described by two scaled parameters and the aspect ratio of
the box. Marginal stability analysis predicts a spontaneous symmetry-breaking instability of the strip state,
similar to that predicted recently for a different set of constitutive relations. If the system is big enough, the
marginal stability curve becomes independent of the details of the boundary condition at the driving wall. In
this regime, the density perturbation is exponentially localized at the elastic wall opposite the thermal wall. The
short- and long-wavelength asymptotics of the marginal stability curves are obtained analytically in the dilute
limit. The physics of the symmetry-breaking instability is discussed.
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I. INTRODUCTION

Granular materials play an important role in industrial a
plications, geophysics, and astrophysics. They are also
great general interest to physicists, as each of the ‘‘phas
of granular materials, solid, liquid, and gas, have unus
properties that distinguish them from their classic~atomic or
molecular! counterparts@1–3#. We will consider granular gas
~or rapid granular flow! and focus on a variant of clusterin
instability, a striking tendency of granular gases to fo
dense clusters. Clustering instability was first discussed
the context of a freely ‘‘cooling’’ granular gas@4–6#. Fol-
lowing these works, the related clustering phenomena w
investigated in driven granular gases as well, both in exp
ments@7,8# and in particle simulations@9–11#.

Granular clustering results from energy losses by inela
collisions, and it is a manifestation of thermal condensat
instability, also encountered in other fields, for example,
gases and plasmas that cool by their own radiation@12#.
Since the discovery of the clustering instability, the valid
of granular hydrodynamics~see Ref.@13# for a review! has
been under scrutiny@3#. In contrast to the clustering in
freely ‘‘cooling’’ granular gas, where one deals with a com
plex time-dependent process, steady states are achievab
driven granular systems. One of the simplest settings of
type is driving the granulate by a side wall at a zero grav
Therefore, an ensemble of inelastically colliding ha
spheres, confined in a box and driven by one or two ‘‘th
mal’’ walls has served as a prototypical driven granular s
tem @7,9,10,14–17#. Steady states of this system have serv
as the test beds for granular hydrodynamics and its vi
tions. The first analysis of this system in the physical lite
ture was performed, in one dimension, by Kadanoff and
workers@9#. The nearly elastic particles were constrained
move on a straight line with energy input from the boun
aries. Particle simulations@9# showed that, for typical initial
conditions, the system evolves to a state where the part
are separated into two groups. Almost all particles form
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cluster in a small region of space, where they move with v
small velocities, while a very few remaining particles mo
with high velocities. Clearly, this steady state cannot be
scribed by granular hydrodynamics~actually, by any coarse
grained theory!. Therefore, the results of Kadanoff and c
workers @9# brought into question the validity of granula
hydrodynamics in general.

This question was addressed in two subsequent theore
works @10,11# that dealt with similar systems in two dimen
sions. Esipov and Po¨schel@11# investigated an ensemble o
nearly elastic hard disks in a circular box with the circum
ference serving as a thermal wall. Grossmanet al. @10# con-
sidered a rectangular box, one side of which served a
thermal wall. Particle simulations@10,11# showed granular
clusters: dense and ‘‘cold’’ regions of granulate develop
away from the thermal wall. In terms of the coarse-grain
particle density, these steady-state clusters had sim
shapes: azimuthally uniform~circular state! @11# and laterally
uniform ~strip state! @10#. Grossmanet al. also showed that,
for nearly elastic collisions, the strip state is describable b
steady-state solution of granular hydrodynamic equatio
The empiric constitutive relations suggested by Grossm
et al. used simple interpolations between the low-dens
limit, where the constitutive relations are derivable syste
atically @18#, and high-density limit where, close to the den
packing, free volume arguments can be used.

The results of Refs.@10,11# showed that the anomaly ob
served in the one-dimensional setting@9# does not persist in
higher dimensions. Clustered states qualitatively similar
those of Grossmanet al. were observed in experiment o
Kudrolli et al. @7# who investigated a system of steel sphe
in a box, rolling on a smooth surface and driven by a rapi
vibrating side wall. The number of particles served as
control parameter in Ref.@7#. A dense cluster of the strip typ
was observed when the number of particles was big enou
in much the same way as in Ref.@10#. The basic physics of
the strip state is simple and can be explained by the follo
ing hydrodynamic argument. Because of the inelastic co
©2002 The American Physical Society06-1
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sions the particle random motion slows down~that is, the
granular temperature decreases! with the increase of the dis
tance from the driving wall. To maintain the momentum b
ance, the granular density should increase with this dista
When the total number of particles is big enough~the rest of
parameters being the same!, the density contrast become
large, and the enhanced density region away from the driv
wall is observed as the strip state.

The prototypical system exhibits many interesting ph
nomena ofnonhydrodynamicnature. These include inelast
collapse@11,15#, possible lack of scale separation@10#, non-
Gaussianity in the particle velocity distribution@10,16#, nor-
mal stress difference and pressure nonuniformities@14#, etc.
For nearly elastic collisions, however, granular hydrodyna
ics was shown to yield an accurate quantitative descriptio
the dilute limit @14#, and a reasonably accurate descripti
for moderate and high granular densities@10#. Of course, the
nearly elastic limit is quite restrictive for most of the realis
granular flows. Still, this limit is conceptually important ju
because granular hydrodynamics can be used there. Gra
hydrodynamics has a great predictive power and helps u
identify important collective phenomena~shear flows and
vortices, shocks, different modes of clustering flows, e!
that are difficult, if not impossible, to identify and predict
the language of individual particles. Once identified, the
phenomena can then be investigated in experiment and s
lations in more general~not necessarily hydrodynamic! for-
mulations.

Therefore, granular hydrodynamics provide a leadin
order approach to a big ensemble of nearly elastically col
ing grains. This approach has been taken recently by Li
et al. @17# who employed granular hydrodynamics for a s
bility analysis of the strip state described above. The anal
revealed a spontaneous symmetry-breaking instability of
strip state with respect to perturbations along the strip. W
within the instability region, the clustered states with brok
symmetry, found by a numerical solution of the steady st
hydrodynamic equation, are strongly localized in the late
direction: most of the particles are located in dense ‘‘islan
@17#. These results indicate that the prototypical system
show a nontrivial behavior even in the leading-order, hyd
dynamic limit. Indeed, this systems can be put into the lis
pattern-forming systems far from equilibrium@19#.

The present work focuses on a more detailed stab
analysis of this system. Our first objective is to check as
what extent the symmetry-breaking instability predicted
Ref. @17# is sensitive to the constitutive relations. Livneet al.
@17# employed the empirical relations suggested by Gro
manet al. @10#. Here we shall use the better-known Jenkin
Richman~JR! relations@20#. While the relations of Gross
man et al. are more accurate for high densities~even
including those close to the dense packing limit!, the JR
relations should work better at low and intermediate den
ties. We shall see, however, that the marginal stability curv
obtained with these two sets of relations, are not much
ferent from each other. This implies that the symmet
breaking instability is robust. Our second objective is to
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more insight into the marginal stability problem and, whe
possible, to obtain analytic results. We shall show that
marginal problem is equivalent to an eigenvalue problem
quantum mechanics. An important finding here is a univer
behavior of the marginal stability curves in the limit whe
the density perturbations are strongly localized at the ela
wall opposite to the thermal wall. In the dilute limit, w
analytically obtain the short- and long-wavelength asymp
ics of the marginal stability curves and density eigenfun
tions. We also give a physical interpretation to the symme
breaking instability and to the density borders of t
instability region.

The rest of the paper is organized as follows. In Sec. II
formulate the model and briefly describe the strip state:
simplest steady state of the prototypical system. Section
presents marginal stability analysis of the strip state a
compares the results obtained for two different sets of c
stitutive relations. More results on marginal stability, inclu
ing some analytic results in the dilute limit, are presented
Sec. IV. Section V includes a discussion and summary.

II. PROTOTYPICAL SYSTEM AND STRIP STATE

The prototypical driven granular system in two dime
sions include inelastically colliding hard disks of diameterd
and massm51, moving in a box with dimensionsLx3Ly .
The gravity force is zero. Collisions of disks with the wal
x50, y50 andy5Ly are assumed elastic. The wallx5Lx is
‘‘thermal’’ wall: upon collision a particle is assigned a ran
dom velocity taken from a Gaussian ensemble with tempe
tureT0. Energy input at the thermal wall balances the ene
dissipation due to interparticle collisions, so the system
reach a steady state. We shall parametrize the inelasticit
the particle collisions by a constant normal coefficient
restitutionr and work in the nearly elastic limit: 12r 2!1.
In this limit, the Navier-Stokes granular hydrodynamics
expected to be sufficiently accurate in a system with a
number of particles and small Knudsen number. The poss
steady states of the system are described by the steady
versions of the momentum and energy balance equation

p5const and “•~k“T!5I , ~1!

wherep is the granular pressure,T is the granular tempera
ture,k is the thermal conductivity, andI is the rate of energy
losses by collisions. We assume that the number densityn is
not too big:n/nc<0.5, wherenc52/(A3d2) is the ~hexago-
nal! dense packing density. This assumption enables u
employ the constitutive relations derived by Jenkins a
Richman@20# and presented in a more convenient form
Babić @21#. For the steady state problem, the required c
stitutive relations include the equation of statep5p(n,T)
and relations fork andI in terms ofn andT. In our notation,
these relations@20,21# can be written as

p5nT~112G8!,
6-2
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k5
2dnT1/2G8

Ap
F11

9p

16 S 11
2

3G8
D 2G ,

I 5
8~12r !nT3/2G8

Apd
,

G85

nS 12
7n

16D
~12n!2

, ~2!

wheren5n(pd2/4) is the~local! solid fraction. Let us intro-
duce scaled coordinates:r /Lx→r . In the new coordinates th
box dimensions are 13D, where D5Ly /Lx is the aspect
ratio. Introducing the normalized inverse densityz(x,y)
5nc /n(x,y), one can rewrite the energy balance equation
Eq. ~1! in terms ofz(x,y):

“•„F~z!“z…5hQ~z!, ~3!

whereF(z)5A(z) B(z),

A~z!5

GF11
9p

16 S 11
2

3GD 2G
z1/2~112G!5/2

,

B~z!5112G1
p

A3

zS z1
p

16A3
D

S z2
p

2A3
D 3 ,

Q~z!5
6

p

z1/2G

~112G!3/2
,

G~z!5
p

2A3

z2
7p

32A3

S z2
p

2A3
D 2 , ~4!

and h5(2p/3)(12r )(Lx /d)2. Notice that, for an arbitrary
small but finite inelasticity 12r , the dimensionless param
eterh can be made arbitrarily large, if the system sizeLx is
large enough. Parameterh differs from the parameterL used
by Livne et al. @17# only by a numerical factor of order unity
Of most interest are regimes whereh@1, see below.

The boundary conditions for Eq.~3! are determined by the
properties of the particle-wall interactions. At the elas
walls x50, y50, andy5D we should prescribe a zero no
mal component of the heat flux. In terms of the inverse d
sity z we have¹nz50 at these three walls. Here the indexn
denotes the gradient component normal to the wall. The c
stant temperature at the ‘‘thermal’’ wallx51 yields the con-
dition ]z(x51,y)/]y50. To make the formulation of the
problem complete, one more condition is needed. In exp
02130
n

-

n-

i-

ment or particle simulations, the number of particlesN is
fixed. This yields a normalization condition,

1

DE0

1E
0

D dxdy

z~x,y!
5 f , ~5!

where f 5^n&/nc is the area fraction of the grains and^n&
5N/(LxLy) is the average number density of the grains.

Equations~3!–~5! and the boundary conditions make
complete set. One can see that the governing paramete
this system are the scaled parametersh, f, and D. If the
system is infinite in they direction, only two governing pa-
rametersh and f remain. Notice that the steady-statedensity
distributions are independent of the wall temperatureT0, in
contrast to the similar problem with gravity, where the gra
ity acceleration, combined withT0 and the~finite! system
size in the direction of gravity, would make an addition
governing parameter.

The laterally uniform steady state~strip state! corresponds
to the one-dimensional (y-independent! solutionz5Z(x). It
is described by the equations

~FZ8!85hQ, Z8ux5050,

and E
0

1

Z21~x!dx5 f , ~6!

where primes stand for thex derivatives. For the strip state
the boundary condition at the wallx51 drops out. This im-
plies, in particular, that thedensityprofile of the strip state is
independent of the exact nature of the driving wall~thermal
or vibrating wall! @22#. This degeneracy of the strip state
caused by the character of particle interaction: the hard-c
potential does not introduce any characteristic energy@11#.
Notice that, instead of prescribing the grain area fractionf,
one can prescribe the inverse densityZ5Z0 at x50. This
condition, combined with the no-flux condition atx50 de-
fines a Cauchy problem forZ(x). Solving the Cauchy prob-
lem, one can then compute, from the last equation in Eq.~6!,
the respective value off. At a fixedh, there is a one-to-one
correspondence betweenZ0 and f. Therefore, an alternative
parametrization of the strip state is given by the scaled nu
bersh and Z0. We shall see below that the same prope
keeps~and can be conveniently used! in the marginal stabil-
ity problem. Figure 1 shows a typical example of the sca
density profilen(x)/nc of the strip state obtained by solvin
Eqs.~6! numerically.

III. INSTABILITY OF THE STRIP STATE: MARGINAL
STABILITY CURVES

In general, the strip state is only one of the possible so
tions of Eq.~3!. Because of its nonlinearity, Eq.~3! may have
additional solutions satisfying the same boundary conditio
When these additional solutions exist, they are truly tw
dimensional: the translational symmetry alongy is broken.
An important class of these solutions bifurcate supercritica
from the strip state@17#. Therefore, close to the bifurcatio
point, these solutions can be found by linearizing Eq.~3!
6-3
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EVGENIY KHAIN AND BARUCH MEERSON PHYSICAL REVIEW E66, 021306 ~2002!
around the strip state. A similar analysis was performed
Ref. @17# for the constitutive relations of Grossmanet al.
@10#. In the framework of atime-dependenthydrodynamic
formulation, this analysis corresponds tomarginal stability
analysis of the strip state with respect to small perturbati
along the strip@17#.

Substitutingz(x,y)5Z(x)1ck(x)cosky and linearizing
Eq. ~3! with respect to the small correctionck(x)cosky, we
obtain

f92S hQZ

F
1k2Df50. ~7!

Here f(x)5F ck(x), functionsF and Q are evaluated atz
5Z(x), and subscriptZ means thez derivative evaluated a
z5Z(x). The boundary conditions are

f8~x50!50 and f~x51!50. ~8!

Equation~7! coincides with the Schro¨dinger equation for an
evenwave functionf(x) of a particle in the potential well

U~x!5H h QZ

F
if uxu,1,

1` otherwise.

~9!

The quantity2k2 serves as the energy eigenvalue. The
ergy levels in the potential~9! are always discrete, and the
is an infinite number of them. However, as the wave num
k should be real, only negative or zero energy levels
admissible. At fixed values ofh and f, the potential~9! ad-
mits at most one such energy level. The absence of nega
energy levels implies that, in the vicinity of the strip sta
there are no steady states different from it. The presence
negative energy level corresponds to a ‘‘weakly tw
dimensional’’ steady state, bifurcating from the strip sta
We shall exploit the quantum-mechanical analogy more fu
in Sec. IV. Here we report on some numerical results. Fig
2 shows the marginal stability curves: the curvesk5k( f ) at
different values ofh, computed numerically. In these com
putations, the parameterh was taken large enough. The str
state is unstable below the respective curve and stable a

FIG. 1. An example of the scaled density profilen(x)/nc of the
strip state for the JR constitutive relations. The governing par
eters areh5104 and f 50.0342.
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the curve. Notice that, at a fixedh, the instability is possible
only within a finite interval off: f 1(h), f , f 2(h). The same
property was reported in Ref.@17# for another set of consti-
tutive relations. We shall give a physical explanation to t
finding in Sec. IV. Notice~see also Ref.@17#! that, at largeh,
the high-density stability borderf 2 is quite small. The curves
in Fig. 2 are actually plotted in scaled coordinates:kh21/2

versusf h1/2. It can be seen that, in the scaled coordinates
the curves exit from the same point of the horizontal a
f h1/2. In addition, the maxima of all the curves are equ
These observations will be also explained in Sec. IV.

If the system is infinite in the lateral direction,D5`,
while h and f are fixed, a whole continuum spectrum
wave numbers betweenk50 and k5k(h, f ) is unstable.
Both in experiment and in numerical simulationsD is finite.
In this casek becomes discrete because of the boundary c
ditions: k5mp/D, wherem51,2, . . . . Foreachm we can
find the critical value of the aspect ratioD ~let us call itDm)
such that forD.Dm the strip state loses stability with re
spect to them mode. Obviously,Dm5mD1, and D1 is the
lowest critical value for the symmetry-breaking instabilit
Figure 3 showsD1 as a function off for different values of
h. For fixed h and f, the strip state is unstable above th
curve. It is seen from Fig. 3 that, in order to observe t
symmetry-breaking instability, one does not need to wo
with very large aspect ratiosD: it is sufficient if the system is
big enough, so that parameterh is sufficiently large.

To what extent is the symmetry-breaking instability se
sitive to the precise form of the constitutive relations? W
compared the marginal stability curvesD5D1( f ) for differ-
ent values ofh with the respective curves@17# found for the
constitutive relations of Grossmanet al. @10#. A typical ex-
ample of this comparison is shown in Fig. 4. One can
that, qualitatively, the results are the same: both curves
scribe a symmetry-breaking instability at a critical value
the aspect ratio that depends on the area fraction. In b
cases, there are sharp low- and high-density borders of in

-

FIG. 2. Marginal stability curves for different values ofh, plot-
ted in scaled coordinates:kh21/2 versus f h1/2. For a fixedh the
strip state is stable above the respective curve and unstable b
the curve. The values ofh are 104 ~solid line!, 2.53104 ~dashed
line!, 53104 ~dotted line!, and 105 ~dash-dot line!.
6-4
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SYMMETRY-BREAKING INSTABILITY IN A . . . PHYSICAL REVIEW E 66, 021306 ~2002!
bility region. Therefore, we can conclude that the instabi
is robust and does not require a very special form of
constitutive relations. On the other hand, there is a notice
~about 15%! difference in the exact positions of the margin
stability curves, so the instability provides a good quant
tive test for constitutive relations of granular hydrodynami

IV. MORE RESULTS ON MARGINAL STABILITY

In this section we investigate the marginal stability pro
lem in more detail and obtain some analytic results in
dilute limit.

A. Localization and universality

Let us characterize the strip state by the scaled param
h and Z0 and introduce a different rescaling of the coord
nate: x̄5x h1/2. In terms of the original physical coordinat
xph , the new rescaling is independent of the system size

x̄5S 2p

3 D 1/2~12r !1/2xph

d
.

FIG. 3. The critical aspect ratioD1 for the symmetry-breaking
instability as a function off for different values ofh. For a fixedh,
the strip state is stable below the respective curve and uns
above the curve. The parameters areh15104 ~solid line!, h252.5
3104 ~dashed line!, h3553104 ~dotted line!, andh45105 ~dash-
dot line!.

FIG. 4. The critical aspect ratioD1( f ) for the symmetry-
breaking instability as computed for the constitutive relations
Grossmanet al. @10# ~dash-dotted line! and of JR@20# ~dotted line!.
Parameterh511 094.
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Equations~6! for the strip state become

~FZ8!85Q, Z~ x̄50!5Z0 and Z8~ x̄50!50,
~10!

while the eigenvalue problem~7! and ~8! reads

f92S QZ

F
1 k̄2Df50, f8~ x̄50!50

and

f~ x̄5h1/2!50. ~11!

Now the primes denote the derivatives with respect tox̄,
while k̄5kh21/2 is the new scaled wave number. Like th
coordinatex̄, the new scaled wave numberk̄ is independent
of Lx :

k̄5S 3

2p D 1/2 kph d

~12r !1/2
,

wherekph is the physical wave number. The problem~10!
and ~11! is determined by two parameters:Z0 andh. How-
ever,h enters the rescaled equations only in one place: in
last boundary condition in Eq.~11! where it determines the
scaled system size. If the wave functionf( x̄) is strongly
localized in the potential wellU( x̄) ~correspondingly, the
negative energy level is sufficiently deep!, the results fork̄
and f( x̄) become independent ofh at sufficiently largeh.
Indeed, in this case one can safely move the boundarx̄
5h1/2 to infinity. It is important that, in this case, the exa
form of the boundary condition at the driving wall becom
insignificant, leading only to exponentially small correctio
@22#. This universal ‘‘localization regime’’ was discovered i

FIG. 5. Marginal stability curves for different values ofh, plot-

ted in coordinatesk̄5kh21/2 versusZ0. For a fixedh the strip state
is stable above the respective curve and unstable below the c
The inset shows the splitting of the curves near the high-den
stability border. The values ofh are: 104 ~solid line!, 2.53104

~dashed line!, 53104 ~dotted line!, and 105 ~dash-dot line!.
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EVGENIY KHAIN AND BARUCH MEERSON PHYSICAL REVIEW E66, 021306 ~2002!
Ref. @17# that employed a different set of constitutive rel
tions. The criterion for localization can be obtained from t
requirement that the localization length~which is of order
k̄21) be much smaller than the~scaled! system sizeh1/2. In
the physical units it corresponds to the short-wavelen
limit of the bifurcating solution:kphLx@1. To fulfill this
criterion, k̄ should be far enough from the borders of t
instability interval, wherek̄ vanishes. In the following sec
tion we will work in the dilute limit and rewrite this criterion
in terms of the governing parameters of the problem.

Figure 5 shows the marginal stability curvesk̄5 k̄(Z0) for
different values ofh, obtained numerically. Instead of th
bordersf 1(h) and f 2(h) of the instability interval in terms
of parameterf, the respective borders in terms of parame
Z0 appear. One can see that, for large values ofh, the mar-
ginal stability curves coincide in a wide region ofZ0 not too
close to the borders of the instability interval. This regi
corresponds to strong localization. Figures 6–8 show
form of the potential~9! and the negative energy level2k2

in three characteristic cases~in these figures we returned t
the rescaling of the coordinates and wave number by
system sizeLx). Figure 6 corresponds to the region of p

FIG. 6. An example of the negative energy levelE52k2

.283.01 ~dashed line! in the potentialU(x) ~solid line! in the
regime of localization. The parameters areh52.53104 and Z0

56.

FIG. 7. An example of the negative energy levelE52k2

.20.155 ~dashed line! in the potentialU(x) ~solid line! in the
absence of localization. The parametersh52.53104 and Z0575
correspond to the region close to the low-density stability bord
02130
h

r

e

e

rameters where the energy level is deep and eigenfunctio
localized. Figures 7 and 8 correspond to the parameter
gions close to the low- and high-density borders of the ins
bility, respectively. There is no localization here. Notice t
qualitative change in the form of the potential near the hig
density stability border. Figure 9 shows the respective eig
functions in these three cases.

B. Marginal stability borders and physics of the instability

The low- and high-density stability bordersf 1(h) and
f 2(h) ~or respective borders in terms ofZ0) are determined
by the zero-eigenvalue (k̄50) solution of Eq.~11!. This so-
lution can be found if we know the strip solutionZ( x̄;Z0) of
Eq. ~10!. Indeed, it is easy to check that functionf0( x̄)
5F ]Z/]Z0 is a solution of Eq.~11! with k̄50, satisfying
the boundary conditionf8( x̄50). Employing the second
boundary conditionf( x̄5h1/2)50, we obtain]Z1 /]Z050,
whereZ15Z( x̄5h1/2;Z0). For a givenh, this equation is an
algebraic equation forZ0. Our numerical results imply tha
this equation has only two solutions corresponding to
low- and high-density instability borders. The instability bo
ders have a clear physical meaning that sheds light on

FIG. 8. Another example of the negative energy levelE52k2

.24.1 ~dashed line! in the potentialU(x) ~solid line! in the ab-
sence of localization. The parametersh52.53104 andZ052.3 cor-
respond to the region close to the high-density stability border.

FIG. 9. Eigenfunctionsf(x) corresponding to the eigenvalue
shown in Fig. 6~strong localization, solid line!, Fig. 7 ~dash-dot
line!, and Fig. 8~dashed line!. The eigenfunctions are~arbitrarily!
normalized so thatf(0)51.
6-6
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physics of the instability. Let us consider the granular pr
surep5nT(112G) @20# of the strip state, and introduce
scaled pressure

P5
p

ncT0
5

112G

Z

T

T0
.

As P is independent of the coordinates, we can compute
the thermal wallx̄5h1/2. Here T5T0 and Z5Z1, so we
arrive at

P5
112G~Z1!

Z1
5P~h, f !.

Now let us compute the derivative]P/] f at a constanth:

]P

] f
5

]P

]Z1

]Z1

]Z0

]Z0

] f
.

One can easily check that the first and third multipliers
the right-hand side of this relation are always negati
Therefore, the sign of]P/] f is determined by the sign o
]Z1 /]Z0. As we have seen, the marginal stability borders
determined by equation]Z1 /]Z050. Therefore, the steady
state pressure has its extremum points exactly at the poinf 1
and f 2. Figure 10 shows an example of the dependencP
5P(f) at a constanth for the strip state, found numerically
One can see, thatP is a decreasing function off within the
instability interval (f 1 , f 2), and an increasing function off
outside the interval. The physical interpretation of these
sults is clear. The presence of the anomalous~falling! part of
the P( f ) curve indicates instability, and it is caused by t
destabilizing role of collisional heat losses. We can say t
in the interval (f 1 , f 2), the granulate hasnegative lateral
compressibility. At f , f 1 the heat losses are too small
cause instability. The presence of the high-density bordef 2
is caused by the finite-density corrections to the constitu
relations~that is, by the finite size of the particles!. This is in
contrast to radiative condensations in gases and plas
where such a stabilizing effect would be absent@12#. Now

FIG. 10. The scaled steady-state granular pressureP versus the
grain area fractionf for the strip state. The two circles correspond
the marginal stability bordersf 1 and f 2. The effective lateral com-
pressibility of the gas is negative on the interval (f 1 , f 2). Parameter
h5104.
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consider a small density modulation of the strip state wit
very long wavelength:k→0. For this perturbation, the stab
lizing effect of the lateral heat conduction vanishes, and
negative compressibility makes the strip state unstable in
interval (f 1 , f 2). For a nonzerok, the lateral heat conduction
has a stabilizing effect. Therefore, a density modulation w
too short a lateral wavelength should be stable, as Fig
indeed shows.

C. Dilute limit

In this section we shall work in the dilute limit and deriv
several analytic results. We shall see that, at largeh, the
dilute limit faithfully reproduces the low-density parts of th
marginal stability curves.

1. Strip state and marginal stability problem

In the dilute limit, Z@1, Eq. ~10! for the strip state be-
comes

~Z3/2!953Z21/2, ~12!

where the primes denote thex̄ derivatives. The boundary
conditions areZ8( x̄50)50 andZ( x̄50)5Z0, whereZ0 is
related to f and h by the normalization condition
*0

AhZ21dx̄5 f h1/2. The solution of this problem is elemen
tary:

x̄5
Z0

2
~arccoshAz1Az22z!, ~13!

wherez5Z/Z0 and

Z05
2h1/2

f h1/21
1

2
sinh~2 f h1/2!

. ~14!

~Returning for a moment to the old rescaling of the coor
nate,xph /Lx→x, one can see that the density profile~13! is
determined by asingle parameter:j5 f h1/2.! Equation~11!

for f( x̄)5(A3/2)Z1/2( x̄)ck( x̄) takes the form

f92S k2
1

z2D f50, ~15!

wherek5 k̄2Z0
2, andz5z( x̄) is given, in an implicit form,

by Eq.~13!. The boundary conditions for Eq.~15! remain the
same as in Eq.~11!. As z( x̄) is a monotonic function ofx̄, we
can change the independent variable in Eq.~15! from x̄ to z.
The resulting equation forf(z) is

4~z21!zf912f81~12kz2!f50, ~16!

where the primes now denote thez derivatives. The function
f(z) is defined on the interval 1<z<z1, where z1
5Z1 /Z05cosh2j. One boundary condition isf(z5z1)50
to which we may add an arbitrary normalization conditi
f(z51)51. An additional boundary condition,f8(z51)
6-7
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5(k21)/2, can be found from Eq.~16! itself, after substitut-
ing therez51. This eigenvalue problem includes a sing
parameterj, while k serves as the eigenvalue.

We have been unable to solve Eq.~16! analytically for a
generalk. Still, several important asymptotics can be o
tained.

2. Zero-energy state and stability border f1

For k̄50, Eq. ~16! can be solved analytically:

f~z,k̄50![f0~z!5Az2Az21 arccoshAz. ~17!

In other words, we impose a zero eigenvaluek̄50 and find
the low-density stability borderf 15 f 1(h) from the bound-
ary conditionf0(z1)50. We obtain an algebraic equatio
coth(j1)5j1 for j15 f 1h1/2. Its solution isj151.199 68 . . . .
This result explains why all marginal stability curves show
in Fig. 2 depart~almost! from the same point at the low
density side. Figure 11 compares the scaled quantityf 1h1/2 at
different h, found numerically from Eq.~7!, with this ana-
lytic prediction~a constant!. The agreement is very good fo
largeh. As h goes down,f 1 increases and the dilute approx
mation starts to deteriorate.

Figure 12 compares the analytic result for the zero-ene
eigenfunctionf0(x), given by Eqs.~17! and ~13!, with a
numerical solution of Eq.~7! for h5104. The coordinatex in
Fig. 12 is rescaled byLx . The analytic and numeric result
are obtained for slightly different values off 1 ~see Fig. 11!.
One can see that the agreement is excellent.

3. Short-wavelength limit: Localization and universality

In the short-wavelength limit the system boundaryz5z1
5cosh2j can be moved to infinity. This requires a stron
inequalityj5 f h1/2@1. In this limit, the eigenvalue problem
~16! does not include any parameter. The eigenvaluek

should therefore be a number of order of unity, hencek̄
5A/Z0, with constantA of order of unity. The constant ca

FIG. 11. The scaled low-density stability boundaryj15 f 1h1/2 at
differenth1/2 as found numerically from Eq.~7! ~circles!. The solid
line shows the analytical resultj151.199 68 . . . obtained in the
dilute limit.
02130
-

y

be found numerically:A.0.525. This simple result repre
sents the low-density limit of the ‘‘universal’’ marginal sta
bility curve, corresponding to strong localization. Figure
shows this asymptotics forh5105. One can see excellen
agreement for large enoughZ0, but not too close to the
higher-Z0 ~low-density! instability border. Near the instabil
ity border j becomes of order of unity, and localizatio
breaks down.

Returning to the parametersh and f, and to the wave
numberk5kphLx , we can rewrite the asymptoticsk̄5A/Z0
as

k5
A

2 F f h1/21
1

2
sinh~2 f h1/2!G . ~18!

This asymptotics is shown in Fig. 14.
The asymptotics~18! is valid whenj5 f h1/2@1. It is easy

to check that this criterion coincides, in the dilute limit, wi
the localization criterionk̄21!h1/2 discussed in Sec. IV A.
On the other hand, the parameterj should not be too large

FIG. 12. The zero-energy eigenfunctionf0(x) computed nu-
merically from Eq.~7! ~circles! and given analytically by Eqs.~17!
and ~13! ~solid line!. The parameters areh5104, f 1,num50.0124
~circles! and f 1,anal50.0120~solid line!.

FIG. 13. The marginal stability curve forh5105, plotted in

coordinatesk̄5kh21/2 versusZ0 ~solid line! and two dilute-limit

asymptotics: the dilute-limit partk̄5A/Z0 of the ~‘‘universal’’ !
short-wavelength curve~dotted line! and the long-wavelength as
ymptotics~25! ~dashed line!.
6-8
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so that the dilute limit conditionZ0@1 is still satisfied, see
Eq. ~14!. These two criteria can be rewritten as a stro
double inequality forf,

1

h1/2
! f !

ln~8h1/2!

2h1/2
,

that can be satisfied only for extremely largeh.

4. Long-wavelength limit: Perturbation theory

Close to the low-density stability border,f 2 f 1! f 1
51.199 68 . . .h21/2 we can assume thatk!1 and solve Eq.
~16! perturbatively. In the physical units, this strong inequ
ity corresponds to the long-wavelength limit:kphLx!1. In
its turn, the dilute limit requiresh@1. We substitute in Eq
~16! f(z)5f0(z)1kV(z), wheref0 is given by Eq.~17!.
Neglecting thek2 term in Eq.~16!, we obtain

4~z21!zV912V81V5z2f0~z!. ~19!

The normalization and boundary conditions atz51 are
V(z51)50 and V8(z51)51/2, respectively. The latte
condition follows from Eq.~19! itself. Equation~19! can be
solved analytically. With the account of the two bounda
conditions, we obtain

V~z!52
1

8
F2~z!1F2~z!I 1~z!2F1~z!I 2~z!, ~20!

whereF1(z)5(z21)1/2 and F2(z)522f0(z). I 1 and I 2
are indefinite integrals:

I 15E z F1G1

G2W
dz and I 25E z F2G1

G2W
dz, ~21!

FIG. 14. Marginal stability curves for different values ofh,
plotted in coordinatesk versusj5 f h1/2. For a fixedh, the strip
state is stable above the respective curve and unstable below
curve. The values ofh are: 104 ~solid line!, 2.53104 ~dashed line!,
53104 ~dotted line!, and 105 ~dash-dot line!. Also shown ~by
circles! is the dilute-limit asymptotics~18! of the universal margina
stability curve.
02130
g

-

where G15z2f0/4, G25z(z21), W5F1F282F18F2 and
the primes denote thez derivatives. IntegralsI 1 and I 2 can
be evaluated in elementary functions, but the results are
cumbersome to be presented here. The additional boun
condition @at z5Z1 /Z0[z1# reads f(z1)5f0(z1)
1kV(z1)50 which yields

k~j!52f0~z1!/V~z1!, ~22!

wherez15cosh2j. At the low-density stability borderf 5 f 1
we havej5j151.199 68 . . . . In theperturbative treatment
one should expandk(j) nearj5j1 up to the linear termj
2j1. The zero-order term vanishes, and we obtain

k~j!52
F28~j1!

2F1~j1!I 2~j1!
~j2j1!.

In the physical variables we have

kphLx5
h1/2

Z0~j1!
S 2

F28~j1!

2F1~j1!I 2~j1!
D 1/2

~j2j1!1/2. ~23!

As Z0 is proportional toh1/2, the right-hand side of Eq.~23!
is actually independent ofh. Evaluating the integralI 2(j1),
we obtainI 2(j1)520.883 381 . . . . Thefinal result is

kphLx52.5115 . . . ~j2j1!1/2. ~24!

Alternatively, we obtain

k̄~Z0!5S j1

Z0~j1! D
3/2S Z02Z0~j1!

2I 2~j1! D 1/2

50.000 485 . . . ~Z0~j1!2Z0!1/2. ~25!

The asymptotics~25! is depicted in Fig. 13. Close to th
higher-Z0 ~low-density! stability border it shows good agree
ment with the marginal stability curve found numerically.

V. SUMMARY AND DISCUSSION

We determined the criteria for the spontaneous symme
breaking instability of the laterally uniform granular clust
~strip state! in a prototypical driven granular gas. Working i
the limit of nearly elastic particle collisions and low or mo
erate densities, we employed granular hydrodynamics w
the Jenkins-Richman constitutive relations@20#. The instabil-
ity of the strip state can be interpreted in terms of negat
compressibility of the granulate in the lateral direction. A
important limit is found, where the marginal stability curve
are independent of the details of the boundary condition
the driving wall. In this regime the density perturbation
exponentially localized at the elastic wall opposite to t
driving wall. Working in the dilute limit, we obtained som
analytic asymptotics of the marginal stability curves.

The results of this work show that the symmetry-break
instability predicted in Ref.@17# is robust and does not re
quire very special constitutive relations. The marginal sta
ity curves obtained in this work are quite similar to tho
obtained earlier@17# for a different set of constitutive rela
tions ~see Fig. 4!. There are some quantitative difference
however. Therefore, the instability provides a sensitive tes
the accuracy of constitutive relations.

the
6-9



e
c

s

er
it
t

h
ng
th

a

ca

a
rk
re
t

ac
nt
t a
e

it
ilit
ta
f

ly
-
en
s.

ef.

al
ems
dy

eady

of

ale
ion
on
of

for
rael
ci-

EVGENIY KHAIN AND BARUCH MEERSON PHYSICAL REVIEW E66, 021306 ~2002!
This work was focused on the criteria of instability of th
strip state. In systems sufficiently long in the lateral dire
tion, instability occurs in a whole range of wave numberk
~below the respective marginal stability curve!. Correspond-
ingly, multiple steady state solutions with differentk are pos-
sible. In a laterally infinite system, these solutions are p
odic in the lateral coordinate. A finite system selects a fin
number of wavelengths@17#. An important issue that was no
addressed in this work is selection: what is the wavelengt
the resulting symmetry-broken cluster in an infinite, or lo
enough, system? The selection has dynamical nature;
important issue is addressed elsewhere@23#.

Recently, the predicted symmetry-breaking instability h
been observed in particle simulations@24#. We hope it will be
investigated in experiment, too. The experimental setting
be of the type used by Kudrolli and co-workers@7,16#: a
system of steel spheres, rolling on a smooth surface
driven by a rapidly vibrating side wall. The present wo
~see also Ref.@17#! provides the region of parameters whe
the instability can be observed. An important issue is
eliminate the static friction between the particles and surf
that occurs far enough from the driving wall. In experime
this is achieved by slightly inclining the system, so tha
very small gravity appears@7,16#. As the result, the strip stat
moves down, toward the driving wall@7#. The model prob-
lem investigated in the present work does not include grav
We expect, however, that the symmetry-breaking instab
should persist for a nonzero gravity. In fact, a similar ins
bility has already been observed in particle simulations o
hy

he
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dilute two-dimensional granular bed fluidized by a rapid
vibrating bottom plate@25#. Under conditions of the simula
tions @25# there was no direct, mechanical coupling betwe
the bottom plate vibration and collective granular motion
Therefore, the vibrofluidized system, investigated in R
@25#, is similar ~though not identical! to the model system
driven by a thermal wall. As gravity introduces an addition
scaled parameter, the phase diagram of this type of syst
should be more complicated. For example, it is alrea
known that, at some values of the scaled parameters, st
‘‘thermal’’ convection~steady state of a different type! devel-
ops both in vibrofluidized systems@25,26# and in systems
driven by a ‘‘thermal’’ wall@27,28#. Granular hydrodynamics
will be instrumental in delineating the phase diagrams
these systems in the limit of nearly elastic collisions.

Finally, when inelasticity of the particle collisions isnot
small, the normal stress difference, possible lack of sc
separation, and non-Gaussianity in the velocity distribut
may become important. The potential role of these effects
the symmetry-breaking instability should be the subject
further investigations.
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s. Pöschel and S. Luding~Springer, Berlin, 2001!, pp. 59–78; I.
Goldhirsch,ibid. pp. 79–99.

@19# M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys.65, 851
~1993!.

@20# J.T. Jenkins and M.W. Richman, Phys. Fluids28, 3485~1985!.
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